Impact Force from Falling Object

Even though the application of conservation of energy to a falling object allows us to predict its impact velocity and kinetic energy, we cannot predict its impact force without knowing how far it travels after impact.

If an object of mass $m=.907185 \mathrm{~kg}$ is dropped from height

Greater penetration implies smaller impact force.

If it bounces back, the impact force is even greater because of the greater change in momentum.

Note that the above calculation of impact force is accurate only if the height h includes the stopping distance, since the process of penetration is further decreasing its gravitational potential energy.

The average impact force calculated here is the average over distance, which can be presumed to be proportional to, but not the same as, the average over time.

HyperPhysics $^{* * * * *}$ Mechanics	R Nave	Go

